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Characterization of the stretched-exponential trap-time distributions
in one-dimensional coupled map lattices
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Stretched-exponential distributions and relaxation responses are encountered in a wide range of physical
systems such as glasses, polymers, and spin glasses. As found recently, this type of behavior occurs also for the
distribution function of a certain trap time in a number of coupled dynamical systems. We analyze a one-
dimensional mathematical model of coupled chaotic oscillators that reproduces an experimental setup of
coupled diode resonators and identify the necessary ingredients for stretched-exponential distributions.

DOI: 10.1103/PhysReVE.66.066205 PACS nunier05.45.Xt, 61.43.Fs, 05.45.Ra

[. INTRODUCTION stretched-exponential distributions—the dynamical spatial
organization is essential for stabilizing the periodic orbits.
The decay of certain quantities characteristic of many This paper is organized as follows. In the following sec-
complex systems, such as glasggp spin glasse§2], qua- tion, we introduce the mathematical model: a one-
sicrystalg[3], trapping model$4—6], coupled nonlinear sys- dimensional coupled map lattice. Section Il discusses the
tems[7-9], turbulence 10,11], and otherd§12—-14 is often  background for the trap-time distributions. In Sec. IV, the
described by a stretched-exponentiat Kohlrausch func-  results from the simulation are presented, to be discussed in
tional form: Sec. V. We summarize our conclusions in Sec. VI.

p(t)=expg —(t/7)P], t=0, (1) Il. MODEL

Our model is a one-dimensional chain Nfdiffusively
with 0<8<<1 [15]. Although Eq.(1) provides a good fitto a  coupled nonlinear deterministic maggx), with a coupling
wide range of experimental and numerical results, in many:onstanty and periodic boundary conditions. The interaction
cases, these can also be fitted by power laws with compas totalistic and involves only the nearest neighbors. The time

rable accuracy; while most experimental setups can spadyolution of this system is discrete and is described by an
many decades in time, few have achieved more than 2 or Berative equation:

decades ing(t). The Kohlrausch form can also be repro-

duced explicitly by a few theoretical modefsee, e.g., Refs. o

[2_,4,5,16,1]’) on the basis of various assumptions, but it is Xn(t+1):(1—a)f(xn(t))+§{ f(Xp_1(1)+ F (X 1 (1)},

still unclear whether there can be a unifying solid theoretical

justification for it. @
Recently, Hunt, Gade, and Mousseét] found that

stretched exponentials could fit experimental distributions ofvhich, given initial conditionsx,(0) for each siten

trap time—the time a system spends in an uninterrupted state 1,2, . . . N, generates a time serigs,(t)}, for integer

with temporal period two, in a one-dimensional network ofvalues of the time index=0,1, . ... This model offers a

coupled diode resonators—over more than 6 decades in thsuch simplified version of the one-dimensional array of di-

distribution. Numerical models, based on this setup, couldde resonators studied in Ref48-21]. Although the indi-

expand this fitting over about ten orders of magnitudeyvidual diode resonators are best described by an inertial

strongly suggesting that dynamics with underlying stretchedequation22], it was shown recently that E¢R) captures the

exponential distributions could be universal in coupled chadynamics in the regime of interest hdrd.

otic systems and ruling out a power-law or any other stan- The diffusive nature of the coupling in E) becomes

dard fit. more apparent if this equation is rewritten in the following
In this paper, we revisit one such numerical model andorm:

provide a detailed characterization of the dynamics of this

network as a function of system size and parameters, provid-

o
ing elements of explanation regarding the origin of stretched- Xp(t+1)= f(Xn(t))+§{ f(Xp-1(1)) = 2f(X,(1))
exponential distributions in this system. In particular, we
show that(1) size effects are important only for relatively + (X4 1(1))}

small systems(2) the natural invariant density(x), gener-
ated by typical orbits has well-defined structure that is self _ @
organized;(3) the structure ofp(x) alone cannot lead to Foa(0)+ 2 DD f(xn(1)), ©)
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where the central difference operair. D _f(x,) is the dis- @
crete Laplacian of (x,) on a one-dimensional grid with unit ~ 3°C[ff| ][ A
spacing. In the limitN—c<, the discrete Laplacian can be I

substituted by its continuous counterpart and E). be- 2501

comes a nonlinear analog of a difference-differential diffu- . ,

sion equation, see, e.g., Rg23]. 2008 |[¢

We use the logistic map(x)=rx(1—x), Ref.[24], in -
order to describe the dynamics of the basic chaotic elementsy 159
Although this differs from the form studied in Ref7], 11
g(y)=1—ay?, the results are unaffected; the two maps are oo Il
conjugate, related by a simple algebraic transformation: ' el |
=Jay/\r+1/2, g(y)=f(x(y))—r/4+1. We choose the Ll TS
logistic map because it is more studied in the literature. In A
the simulations presented here, we fix the value of the cou- 18 HHE “__
pling constant tax=0.25, and varN andr, which we refer % 50 100 150 200
to as the nonlinearity parameter in the following. For a large n
N, ':I:/r "Cah be thOUth of as .a “V'SCOS'I“VH and as a "ff"f' FIG. 1. Coarse-grained time evolution of the coupled logistic
fus'v_'t_y with their usual relation to the temperature_. . map. The coarse-grained varialatg(t) in a stroboscopic represen-

_ Initial values ofx,(0) are taken from a random distribu- tation: for every other iteration, a dot at f,t) corresponds to
tion in the [0,1 interval. Runs are then iterated for a few ; ()= +1 and the blank space signifieg(t)=—1. N=1000 and
hundred thousand steps in order to avoid any transient effe¢}) r = 3.83, () r=3.8888.

before starting the accumulation of data. All the simulations o )
presented here are done on one-dimensional arrays with vaghalogously to Eq(4)—and the distribution of trap time of
able length and periodic-boundary conditions. Statistics ar&iS process was recently studied for a range of distributions
generally accumulated over 2010 time steps. [25]. Using this framework, it is possible to show tat)

Following the experimeri7], the analysis of the dynam- corresponding to the stretched-exponential distribution of the

ics is done using coarse-grained variables defined b occu_pat_ion tim_e is also a str(_atched exponential at long time,
g 9 y albeit with a different stretching exponegt

These results are only valid when the traps are uncorre-
lated in time, which is the case for the systems studied here.
. . , . . The details of this work will be presented elsewhig2e].
where the quantiti,(t) is defined in Eq(2) and Xy is a This establishes a direct reIaFt)ion between the %Iislcribution
certain threshold value. The results presented here are ngt trap time, discussed in this paper, and the more standard
very sensitive to the value of the threshold. For simplicity, gytocorrelation function, measured in a number of experi-
we select the value of the unstable fixed poirf,=1  ments on glasses and other complex systems.

—1/r, for the single map. This coarse graining reduces the
problem from continuous to two state. IV. RESULTS

The basic dynamics of the coupled oscillator being period
2, the analysis is also done only over ev@mn odd time
steps.

on(t)=sgn x,(t) —Xp], t=0,24..., (4)

Before discussing the possible origins for the stretched-

exponential distributions in our model, it is necessary to offer

a characterization of its dynamics as a function of the param-

eters of the model.

[ll. BACKGROUND: THE DISTRIBUTION OF TRAP TIME First, we consider the size effects on the dynamics of the
) . . o network, studying experimental setup, varying in length be-

We are interested in the statistical distributje(t) of trap  tveen 15 and 256 oscillators, and simulated arrays of up to
time in a coarse-grained state space of a one-dimensiongdns of thousands of sites.
chain of coupled nonlinear maps, as shown in Fig. 1. This Then we investigate the dynamics of the system as a func-
quantity is formally equivalent to the distribution of time tion of the nonlinearity parameter which brings the system
intervals between zero crossings of renewal processes, sugiyough a series of dynamical changes from stable periodic
as random walk$25] and has the advantage that it can beorbits to full chaos. In particular, it is important to assess the
measured experimentally and numerically to a high degree gfarts of the parameter space, where the stretched-exponential
accuracy for this systerfv]. distributions can be observed.

Generally, however, experimentally measurable relaxation Once the basic phase diagram is established, we discuss
responses are mathematically described by autocorrelatidhe building up of the dynamics on a single site embedded in
functions of certain dynamical variables. For example, thehe network as well as the spatial structure associated with
inverse Fourier transform of the dynamical structure factorthe stretched-exponential distribution.
the intermediate scattering function, can be calculated as the
time autocorrelation function of the microscopic density dis-
tribution of particles in a materidR6]. As is seen in Fig. 1, the traps are directly associated with

The relation between the autocorrelation functicft) a periodic spatial organization, which is controlled by the
=(o(t")o(t'+1t)), of a renewal processr(t)—defined couplinga.

A. Dependence o\
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1 - - . - correlations vanish exponentially fast with a typical length
1 scale between about 2 and 8, i.e., the only static spatial cor-
0.8 r=3.83 1 relation appearing in the system is directly associated with
N=1000 r=3.8888 the short-range organization.

This short-range correlation implies that size effects
should be very limited. Figure 3 shows the lattice-size de-
pendence on the bifurcation diagram, for a single site on the
lattice.

For small lattices, £ N<32, the dynamics depends on
whetherN is even or odd. For eveN, arrays synchronize
rapidly while the odd sizes continue to display chaotic tra-
jectories. For example, the bifurcation diagram changes
qualitatively as one goes from a single isolated site to a chain

04 - s : s of 8 or 16 oscillators: the chaotic phase disappears totally
0 10 20 n 30 40 and the system remains periodic in the coarse-grained state
space untilr =4.0[see Fig. 8)]. While isolated oscillators

FIG. 2. Spatial  correlation  function C(n)  produce an exponential trap-time distribution, this distribu-
=(0n (1) T4 (1)) 1 - Dots correspond to the numerical data. The i, tends to the stretched-exponential form at short times for
solid line interpolates numerical points and is shown as a guide t?attices with oddN as small as 15. Size effects are still

the eye. The dashed lines show the exponential decay of oscilla- . . S
tions: + 0.55exp(-1/8.25). The inset also showd(n), but calcu- present for these lattices, however, and the long-time distri-

lated for a different value ofr. The amplitude of oscillations bution dlverges from the stretched .e)_(ponenﬁadee Fig.
(dashed linekin this case decays as0.5exp-n/1.8). 4(a)]. Interestingly, the sign of the deviation for the stretched
exponential oscillates, as the array is increased in size 2
As « is increased, the spatial organization goes through<2, indicating a certain spatial frustration in these small
two rapid transitions, showing qualitatively different fea- systems.
tures: Fora< 0.1, the lattice tends to follow a period-2 spa-  For evenN that is not a multiple of four, the mismatch
tial organization. For intermediate values of €.4<0.19,  with the periodicity results in the presence of inclusions of
the lattice immediately freezes into a period-2 state in bottstable defects, with four sites in a row in the same band.
space and time, for all values of the driving parameter, These defects can also be present and be stable in lattices,
Above this thresholde>0.19, the dynamics becomes sto- whereN is a multiple of four.
chastic again, while dominant spatial period goes to 4 and As the number of elements reaches 32, orbits correspond-
even longer for larger. In each of these phases, the varia-ing to larger values of ,,;,<r=<4 become chaotic and the
tion of a affects only minimally the spatial structure of the bifurcation diagram approaches that of an infinite lattigg,
phase. continues to decrease with growing number of sites, and is
In spite of the evident organization seen in Fig. 1, thewell converged for a lattice of a few hundred oscillators. As
spatial correlation is short range. Figure 2 shows that spatialhown in Fig. 4b) the same trend is seen experimentally,

1

1

]
(a) ....... |“ 7 _Illl
0.8] ™
06 - ....
S x
0.2
05 N |

FIG. 3. Bifurcation diagrams fofa) an iso-
lated map,(b) N=16, (c) N=32, and(d) N
=10000. The dashed line in all panels shows the
unstable orbitx, =1—1/r.
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FIG. 5. Larger dots: bifurcation diagram of the magt+1)
=0.75f(x(t))+0.1625. Smaller dots: the same as in Figh)3Al-
thoughp(a) [dashed-dotted line in Fig.(@)] corresponding to the
bifurcation diagram depicted by the smaller dots is nétfanction,
it is narrow enough so that it creates a period-2 attractor in the
coarse grained phase space of the couple map chain.

105 10 20 30 40 multiple-step trap distributions with no clear overall time
w2)P behavior.
As seen in Fig. 6, the value @ increases withr. Forr
FIG. 4. (a) Distribution of trap time forr=3.8888. N=21  —=3.8888, the trap-time distribution is well fitted by a

(squares: set of data points lying above the solid)lmedN=19  gtretched exponential witl~0.5, while atr=4, the full
(open circles: the set of data points lying below the solid)lifiée chaos limit for an isolated logistic map, a fit pgt) gives
solid line corresponds to the stretched-exponential fit (Egwith B=0.70+0.05 andr=3.0+0.5.

B=0.50£0.05 andr=3.0=0.5. In the inset, we show the data for
N=17 (dash-dotted line N=21 (dashed ling and the fit(solid

line). (b) Distribution of trap time for the experimental setup . o . . . .
(squaresN—21: dots N—20; open circlesN=19). The stretched- defined: increasing the lattice size from 64 to 1000 sites

exponential fit is with3=0.75+0.05 and r=5.0+0.5. Vertical leaves the trap distribution essentially unchanged. Moreover,

lines in both panels demarcate the interval, over which the fittingthe Sa_me values g8 are Obta_lned, within the e_rror bars_, _by

procedure was performed. changing the length of the interval, over which the fitting

procedure is performed.

although the inherent disorders help to decrease the finite |"€S€ numbers are also in reasonable agreement with ex-

size effects. perimental results, which shows varying from (0.10
Even though the bifurcation diagrams for an isolated map

and the infinite lattice appear similar, their respective orbits 10

are qualitatively different for most values ofIn particular,

most of the chaotic region of the latter shows a stretched-

Because of the short spatial correlation and the excellent
quality of the simulation data, the exact value @fis well

2

exponential trap-time distribution. 10
B. Dependence orr %10_2
Figure 3 also indicates the effect obn the dynamics of E
a single site in a chain. The coupling stabilizes the orbits, §10’4-
reducing significantly the size of the chaotic region. Its effect =
[~1

is to shift the bifurcation diagram to the right, moving the 6|
dynamics towards periodic orbits as is shown in FigFhg.
5 will be discussed in more detail in Sec. IV.C

The stretched-exponential behavior appears, for a large 107°% g
enough lattice, around,=3.83. At this threshold value, the : - Smc 0000
stretching exponens~0.33, obtained from fitting the long- 0 5 19 15 20
time part of the trap distributiofiFig. 6), according to Eq. ()
(1). 0.33 is the lowest value g8, we could observe for the G, 6. Trap-time distributions fitted with stretched exponen-
explored regions of the parameter space of the model. Belowals, Dots correspond toN=1000, r=3.83 and 8=0.33
this threshold, chaotic windows are interspersed with peri-+0.05, r=11.5+0.5. Open circles correspond t&=64, r
odic ones. Trajectories in these narrow windows tend to fall=3.8888, and3=0.50=0.05, r=2.9+0.5. The solid lines show
erratically into neighboring periodic orbits, generating the best fit to the stretched-exponential functipft).
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FIG. 7. Densitiesp(a) and p(x) of a(t)=[f(x,_1(t))+f(X,.1(t))]/2 [panels(a),(c),(e)] and x(t) [panels(b), (d), (f)] from Eq. (5)
normalized by the maximal value. Note that each row of panels corresponds to the same sets of parameters.

+0.05)—(0.95-0.05). This wider range for the experiment (Gaussiandistribution. However, even with only two terms,

is probably caused by the presence of site disorder. p(a) exhibits a maximum aa= 1/2 [the dash-dotted line in
This confirms that the best functional form for the simu- Fig. 7(a)].
lation data is given by the Kohlrausch function. The presence of one or few peaks gifa) makes the
orbits{x(t)} intermittent for some values of the nonlinearity
C. Single-site dynamics parameterr. This intermittency means that th&oarse-

The iterative rule(2) can be viewed as an equation de- 9rained orbit {o(t)}, see Eq.(4), stays periodic for some
scribing the dynamics of a single element in the presence dfme, becomes chaotic for a certain while, and goes periodic

an external additive perturbatia(t): again. In order to demonstrate, how a periodic attractor de-
velops in a coupled system at a valueroffor which the
X(t+1)=(1—a)f(x(1))+ aa(t), (5 isolated map produces a chaotic orbit, we can imagine a

density p(a) = 6(a—ag), where §(a) is the delta function
where a(t) =[f(x,—1(t))+f(x+1(t))]/2. For simplicity, anda,<[0,1] is a constant. In this case, Eth) becomes
since all sites are statistically identical, we drop the subscripk(t+1)=(1— a)f(x(t))+ aag=c,f(x(t))+c,, which is
nin Eg. (5). the iterative equation for the isolated map scaled by a con-

This form allows us to concentrate on the impact, at thestantc, and shifted by another constary. This manipula-
single-site level, of the rest of the network and to try totion with the isolated map results in a bifurcation diagram
identify the essential elements for a stretched-exponentiatanslated with respect to the original offéig. 3], while
dynamics. For this purpose, it is convenient to use the naturgreserving all its qualitative features, see Fig. 5. In particular,
invariant densityp(x) generated by typical orbitsx(t)}, t  the period-2 attractors of the modified map overlap with cha-
=1,2,..., of the map in Eq5). The notion of the natural otic orbits of the original map.
invariant density is widely used in the studies of chEd4. As discussed above, in the interval €.&<0.19, the lat-
The functionp(x) is defined so that for any interv@k,x  tice falls into period-2 spatial and temporal patterns, i.e.,
+dx] €[0,1], the fraction of the time, typical orbits spend in each of the two neighboring sites oscillate out of phase and
this interval isp(x)dx. In the same way, one can define the each site alternates between two valu€d<x®), as indi-
densityp(a) for the perturbatiora(t) in Eq. (5). cated in Figs. ®) and 7b).

Figure 7 shows the behavior pfa) andp(x) for a few For larger values oty, the natural invariant density be-
sets of the parametets N, andr. In the case of an isolated comes more complex. When the lattice size is a small even
map (@=0) and in the chaotic regima(t) is the sum of number, the spatial pattern is periodic with the period, which
two identically distributed independent random variables—is equal to four(two sites “up” followed by two sites
p(a) is shown by the dash-dotted line in Figby. According  “down” ) and each site again undergoes a period-2 dynamics
to the central limit theorem, if this sum contained much moreFigs. 7c) and 7d)], which is manifested by the peaks in
than two termsp(a) would very well agree with the normal p(x). For N=16, there are narrow peaks @fa) andp(x).
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These peaks broaden and merge rapidly, however, for large 1500«
N, and the system displays strong sign of chaaoticity.

This chaoticity can be controlled by and we see that the
orbits spend more and more time in the period-2 attractors
relative to the chaotic ones as the nonlinearity parameter is  1ggg
decreased, relating directly to a change in the value of the
stretching exponeng [Figs. 7e) and 1f)].

Although providing a clearer picture of the dynamics,
knowledge of the invariant density is not sufficient to repro-
duce the stretched-exponential dynamics. For example,
choosing randomly the values aft) in Eq. (5) according to
a prescribedo(a) generates only an exponential trap-time
distribution. Variations on this theme, including the introduc- ; ¢ ; bRy <l
tion of a two-step distribution, which favors staying in the 0 50 100 50 200
period-2 phase once in it, also fail to give a stretched- n/5

exponential distribution of trap times. Spatial correlations, 5 g Space-time diagram fai=1000 andr=3.83. Dots
even though short range, are essential to induce a stable apglespond to trap boundaries—points in time when a site interrupts
self-organized stretched-exponential distribution. its temporal period-2 dynamics. Every fifth site and every 40th
iteration are shown. The heavy horizontal line shows the region,
which was set into the spatial period-4 state at a certain moment in
D. Stability of the spatial period-4 structure time. Note that the thus induced spatial period-4 domain does not

Figure 1 plots the time sequence fot(t) on a small ha;/e a;rg/] bl:)rsts(;n t_he interior, and is affected by the chaotic phase
region of a 1000-site chain for=3.83 (8~0.33) andr only at the boundaries.

:3'88.88_(3%0'5)' These show a remarkable range in the - tpig can be checked in a second test. We first iterate a
trap size: the larger traps of the first one can be up to 25Q000-site lattice at=23.83, for 16 time steps, in order to
times longer than those at-=3.8888, and corresponding 0 @ gjiminate any transient effects. At that point, at once, half of
time scale ?’0 000 times larger than the bas[c time step. Thigye chain sites are set into the same spatial period-4 state as
time scale is similar to that observed experimentffly In above. As shown in Fig. 8, this phase then disappears gradu-

spite of these very stable traps, for long enough time, all siteany, over about 30 000 time steps, invaded from the edges by
display an identical dynamics and no region of the Iattice,[he chaotic phase.

remains frozen.

Looking at the same figure, we also see thata givenr,
the trap width appears to be uncorrelated with its length:
long traps remain narrow and are composed of ordered do- The previous sections have shown that the dynamics of
mains with several occurrences of period 4, 5, or 6. Whilethe network can be understood in terms of a competition
the period-4 domains can remain totally stable for a longbetween two dynamical regimes: a stable period-2 orbit and
time, the middle site of the three-up or three-down segmené fully chaotic state. This can be deduced from Figs. 5 and 7
in period-5 and period-6 domains show some instabilitywhen the neighboring sites are in opposite bands, their con-
They must, therefore, be considered more as defects in théibution shifts the bifurcation diagram into a period-2 re-
stable phase than as additional spatial structures. Even sgime. A spatial period 4 is therefore, the basic stable motif
these larger basic domains, that occur mostly for the lowewith this set of parameters.
values ofr, are responsible for the apparent spatial periodic- As mentioned above, we cannot reconstruct a stretched-
ity of 5 in the spatial correlation function at=3.83 (see  exponential dynamics by simply using the natural invariant
Fig. 2. density inserted into Eq5). We have found that the only

In view of this discussion, the space-time diagram can b&vay to obtain a stretched-exponential trap-time distribution
separated in two distinct phases: the ordered spatial periodié this situation is to impose a stretched-exponential trap-
and the chaotic phase. The former can only be destroyed &@ine distribution ona(t) for the values ofa within the peak
the boundary or by spatial defe¢ttomains of period 50r)6  region inp(a) (see Fig. 7. More interestingly, connecting a

We verify this observation by two simulations. First, the single site, with a unidirectional coupling, to two sites se-
entire chain is initially set into period-4 state, with the periodjected at random on a lattice, is sufficient to induce a
formed by two neighboring sites witk,(0)=x®), n=1,2  stretched-exponential trap distribution on this single site, al-
and the next two sites witk,(0)=x®, n=3,4. The values beit with a largers than that for the elements that belong to
x) andx® are taken to be equal to those corresponding tahe lattice.
the two peaks inp(x) in Fig. 7(f) for r=3.83 andN Thus, once an external perturbation, following a
=1000. Simulations starting from these initial conditions re-stretched-exponential dynamics, is imposed on a chaotic el-
main frozen in these spatial period-4 and temporal period-2ment, the latter will immediately adopt a similar dynamics.
states indefinitely. Although metastable, these states requitdowever, stretched-exponential distributions cannot be ob-
the presence of defects to be destroyed. served in a self-organized process without spatial organiza-

140

500

V. DISCUSSION

066205-6



CHARACTERIZATION OF THE STRETCHED. . . PHYSICAL REVIEW E 66, 066205 (2002

tion. For example, connecting the nodes of a balanced binary VI. CONCLUSION
tree unidirectionglly towards its root_ resul.ts iq the densities The coupled array of chaotic oscillators presented here
p(x) andp(a), similar to those depicted in Figs(&f and a5 4 number of properties that make it an important model.
7(f), already for two levels in the tree. Nevertheless, the trapas was shown above and in RéT], it is a faithful repre-
time distribution measured at the root node is a pure exposentation of the dynamics of an experimental setup of
nential. This suggests that the stretched-exponential distribwoupled diode resonators in a chaotic regime characterized
tions require some spatial organization allowing time-by a stretched-exponential distribution of trap time. More-
limited, spatial period-4 structures to occur and to beover, the low cost associated with numerically solving the
stabilized. model of Eq.(2) allows us to study the system on time scale
The nature of this spatial organization is somewhat paradnreachable with atomic models; it takes less than a day, on
doxical. Correlations are very short range and the width oft fast processor, to iterate a lattice of 1000 sites ovér 10
these domains are only weakly varying with the stretchingsteps. With traps extending to more than 30000 times the
parameter. While traps at=3.83 are up to 250 times longer Pasic time step, long simulations are absolutely necessary to
than those at=3.8888, their width is only four to five times €Stablish the nature of the dynamics in these systems.
larger, as displayed in Fig. 1. This decoupling between spa- Results of these simulations demonstrate that the
tial and temporal correlation is reminiscent of dynamical het-Strétched-exponential distributions arise from the competi-
erogeneities observed in glass-forming systdi& 28,29, tion between a chaotic and a period-2 regimes. The stretched

Associating a “temperature” with the control parameter exponential requires some spatial organization to appear, but

we see that the spatial size of the traps increases with dd_oes not imply a diverging length scale as the traps become

; . . ; . ?on er and longer: the period-4 structure is sufficient to sta-
creasingr without diverging. In the same way, the size of g g P

. oS X bilize a site onto a periodic orbit and the space of the spatial
dynamical heterogeneities increases and the stretching expQ

oe ) orrelation is only weakly related to the length of the traps
nent B decreases under cooling in glass-forming systems. appearing in these systems.

As we also showed that once in a perfect spatial period-4 " There are strong similarities between this system and the
regime, the system will never become chaotic. The finiteconfigurational glasses, and we suggest that the understand-
lifetime arises from defects in the period-4 phase or from theng gained here could be extended directly to these important
chaotic boundaries. This behavior is similar to what is seemnaterials. We are currently pursuing this avenue of research.
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