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Characterization of the stretched-exponential trap-time distributions
in one-dimensional coupled map lattices
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1Département de Physique and Centre de Recherche en Physique et Technologie des Couches Minces, Universite´ de Montréal,
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Stretched-exponential distributions and relaxation responses are encountered in a wide range of physical
systems such as glasses, polymers, and spin glasses. As found recently, this type of behavior occurs also for the
distribution function of a certain trap time in a number of coupled dynamical systems. We analyze a one-
dimensional mathematical model of coupled chaotic oscillators that reproduces an experimental setup of
coupled diode resonators and identify the necessary ingredients for stretched-exponential distributions.
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I. INTRODUCTION

The decay of certain quantities characteristic of ma
complex systems, such as glasses@1#, spin glasses@2#, qua-
sicrystals@3#, trapping models@4–6#, coupled nonlinear sys
tems@7–9#, turbulence@10,11#, and others@12–14# is often
described by a stretched-exponential~or Kohlrausch! func-
tional form:

f~ t !5exp@2~ t/t!b#, t>0, ~1!

with 0,b,1 @15#. Although Eq.~1! provides a good fit to a
wide range of experimental and numerical results, in ma
cases, these can also be fitted by power laws with com
rable accuracy; while most experimental setups can s
many decades in time, few have achieved more than 2
decades inf(t). The Kohlrausch form can also be repr
duced explicitly by a few theoretical models~see, e.g., Refs
@2,4,5,16,17#! on the basis of various assumptions, but it
still unclear whether there can be a unifying solid theoreti
justification for it.

Recently, Hunt, Gade, and Mousseau@7# found that
stretched exponentials could fit experimental distributions
trap time—the time a system spends in an uninterrupted s
with temporal period two, in a one-dimensional network
coupled diode resonators—over more than 6 decades in
distribution. Numerical models, based on this setup, co
expand this fitting over about ten orders of magnitu
strongly suggesting that dynamics with underlying stretch
exponential distributions could be universal in coupled c
otic systems and ruling out a power-law or any other st
dard fit.

In this paper, we revisit one such numerical model a
provide a detailed characterization of the dynamics of t
network as a function of system size and parameters, pro
ing elements of explanation regarding the origin of stretch
exponential distributions in this system. In particular, w
show that~1! size effects are important only for relative
small systems;~2! the natural invariant density,r(x), gener-
ated by typical orbits has well-defined structure that is s
organized;~3! the structure ofr(x) alone cannot lead to
1063-651X/2002/66~6!/066205~8!/$20.00 66 0662
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stretched-exponential distributions—the dynamical spa
organization is essential for stabilizing the periodic orbits

This paper is organized as follows. In the following se
tion, we introduce the mathematical model: a on
dimensional coupled map lattice. Section III discusses
background for the trap-time distributions. In Sec. IV, t
results from the simulation are presented, to be discusse
Sec. V. We summarize our conclusions in Sec. VI.

II. MODEL

Our model is a one-dimensional chain ofN diffusively
coupled nonlinear deterministic maps,f (x), with a coupling
constanta and periodic boundary conditions. The interacti
is totalistic and involves only the nearest neighbors. The ti
evolution of this system is discrete and is described by
iterative equation:

xn~ t11!5~12a! f „xn~ t !…1
a

2
{ f „xn21~ t !…1 f „xn11~ t !…},

~2!

which, given initial conditions xn(0) for each site n
51,2, . . . ,N, generates a time series$xn(t)%, for integer
values of the time indext50,1, . . . . This model offers a
much simplified version of the one-dimensional array of
ode resonators studied in Refs.@18–21#. Although the indi-
vidual diode resonators are best described by an ine
equation@22#, it was shown recently that Eq.~2! captures the
dynamics in the regime of interest here@7#.

The diffusive nature of the coupling in Eq.~2! becomes
more apparent if this equation is rewritten in the followin
form:

xn~ t11!5 f „xn~ t !…1
a

2
{ f „xn21~ t !…22 f „xn~ t !…

1 f „xn11~ t !…}

5 f „xn~ t !…1
a

2
D1D2 f „xn~ t !…, ~3!
©2002 The American Physical Society05-1
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where the central difference operatorD1D2 f (xn) is the dis-
crete Laplacian off (xn) on a one-dimensional grid with un
spacing. In the limitN→`, the discrete Laplacian can b
substituted by its continuous counterpart and Eq.~3! be-
comes a nonlinear analog of a difference-differential dif
sion equation, see, e.g., Ref.@23#.

We use the logistic mapf (x)5rx(12x), Ref. @24#, in
order to describe the dynamics of the basic chaotic eleme
Although this differs from the form studied in Ref.@7#,
g(y)512ay2, the results are unaffected; the two maps
conjugate, related by a simple algebraic transformationx
5Aay/Ar 11/2, g(y)5 f „x(y)…2r /411. We choose the
logistic map because it is more studied in the literature.
the simulations presented here, we fix the value of the c
pling constant toa50.25, and varyN andr, which we refer
to as the nonlinearity parameter in the following. For a la
N, 1/r can be thought of as a ‘‘viscosity’’ anda as a ‘‘dif-
fusivity’’ with their usual relation to the ‘‘temperature.’’

Initial values ofxn(0) are taken from a random distribu
tion in the @0,1@ interval. Runs are then iterated for a fe
hundred thousand steps in order to avoid any transient e
before starting the accumulation of data. All the simulatio
presented here are done on one-dimensional arrays with
able length and periodic-boundary conditions. Statistics
generally accumulated over 107–1010 time steps.

Following the experiment@7#, the analysis of the dynam
ics is done using coarse-grained variables defined by

sn~ t !5sgn@xn~ t !2xthr#, t50,2,4, . . . , ~4!

where the quantityxn(t) is defined in Eq.~2! and xthr is a
certain threshold value. The results presented here are
very sensitive to the value of the threshold. For simplic
we select the value of the unstable fixed point,x* 51
21/r , for the single map. This coarse graining reduces
problem from continuous to two state.

The basic dynamics of the coupled oscillator being per
2, the analysis is also done only over even~or odd! time
steps.

III. BACKGROUND: THE DISTRIBUTION OF TRAP TIME

We are interested in the statistical distributionr(t) of trap
time in a coarse-grained state space of a one-dimensi
chain of coupled nonlinear maps, as shown in Fig. 1. T
quantity is formally equivalent to the distribution of tim
intervals between zero crossings of renewal processes,
as random walks@25# and has the advantage that it can
measured experimentally and numerically to a high degre
accuracy for this system@7#.

Generally, however, experimentally measurable relaxa
responses are mathematically described by autocorrela
functions of certain dynamical variables. For example,
inverse Fourier transform of the dynamical structure fac
the intermediate scattering function, can be calculated as
time autocorrelation function of the microscopic density d
tribution of particles in a material@26#.

The relation between the autocorrelation functionC(t)
5^s(t8)s(t81t)& t8 of a renewal processs(t)—defined
06620
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analogously to Eq.~4!—and the distribution of trap time o
this process was recently studied for a range of distributi
@25#. Using this framework, it is possible to show thatC(t)
corresponding to the stretched-exponential distribution of
occupation time is also a stretched exponential at long ti
albeit with a different stretching exponentb.

These results are only valid when the traps are unco
lated in time, which is the case for the systems studied h
The details of this work will be presented elsewhere@27#.

This establishes a direct relation between the distribut
of trap time, discussed in this paper, and the more stand
autocorrelation function, measured in a number of exp
ments on glasses and other complex systems.

IV. RESULTS

Before discussing the possible origins for the stretch
exponential distributions in our model, it is necessary to of
a characterization of its dynamics as a function of the para
eters of the model.

First, we consider the size effects on the dynamics of
network, studying experimental setup, varying in length b
tween 15 and 256 oscillators, and simulated arrays of up
tens of thousands of sites.

Then we investigate the dynamics of the system as a fu
tion of the nonlinearity parameterr, which brings the system
through a series of dynamical changes from stable perio
orbits to full chaos. In particular, it is important to assess
parts of the parameter space, where the stretched-expone
distributions can be observed.

Once the basic phase diagram is established, we dis
the building up of the dynamics on a single site embedde
the network as well as the spatial structure associated
the stretched-exponential distribution.

A. Dependence onN

As is seen in Fig. 1, the traps are directly associated w
a periodic spatial organization, which is controlled by t
couplinga.

FIG. 1. Coarse-grained time evolution of the coupled logis
map. The coarse-grained variablesn(t) in a stroboscopic represen
tation: for every other iterationt, a dot at (n,t) corresponds to
sn(t)511 and the blank space signifiessn(t)521. N51000 and
~a! r 53.83, ~b! r 53.8888.
5-2
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CHARACTERIZATION OF THE STRETCHED- . . . PHYSICAL REVIEW E 66, 066205 ~2002!
As a is increased, the spatial organization goes throu
two rapid transitions, showing qualitatively different fe
tures: Fora,0.1, the lattice tends to follow a period-2 sp
tial organization. For intermediate values of 0.1,a,0.19,
the lattice immediately freezes into a period-2 state in b
space and time, for all values of the driving parameterr.
Above this threshold,a.0.19, the dynamics becomes st
chastic again, while dominant spatial period goes to 4
even longer for largea. In each of these phases, the var
tion of a affects only minimally the spatial structure of th
phase.

In spite of the evident organization seen in Fig. 1, t
spatial correlation is short range. Figure 2 shows that spa

FIG. 2. Spatial correlation function C(n)
5^sn8(t)sn1n8(t)&n8,t . Dots correspond to the numerical data. T
solid line interpolates numerical points and is shown as a guid
the eye. The dashed lines show the exponential decay of osc
tions: 60.55exp(2n/8.25). The inset also showsC(n), but calcu-
lated for a different value ofr. The amplitude of oscillations
~dashed lines! in this case decays as60.5exp(2n/1.8).
06620
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correlations vanish exponentially fast with a typical leng
scale between about 2 and 8, i.e., the only static spatial
relation appearing in the system is directly associated w
the short-range organization.

This short-range correlation implies that size effe
should be very limited. Figure 3 shows the lattice-size d
pendence on the bifurcation diagram, for a single site on
lattice.

For small lattices, 1,N,32, the dynamics depends o
whetherN is even or odd. For evenN, arrays synchronize
rapidly while the odd sizes continue to display chaotic t
jectories. For example, the bifurcation diagram chan
qualitatively as one goes from a single isolated site to a ch
of 8 or 16 oscillators: the chaotic phase disappears tot
and the system remains periodic in the coarse-grained s
space untilr 54.0 @see Fig. 3~b!#. While isolated oscillators
produce an exponential trap-time distribution, this distrib
tion tends to the stretched-exponential form at short times
lattices with oddN as small as 15. Size effects are st
present for these lattices, however, and the long-time dis
bution diverges from the stretched exponential@see Fig.
4~a!#. Interestingly, the sign of the deviation for the stretch
exponential oscillates, as the array is increased in siz
32, indicating a certain spatial frustration in these sm
systems.

For evenN that is not a multiple of four, the mismatc
with the periodicity results in the presence of inclusions
stable defects, with four sites in a row in the same ba
These defects can also be present and be stable in latt
whereN is a multiple of four.

As the number of elements reaches 32, orbits correspo
ing to larger values ofr min<r<4 become chaotic and th
bifurcation diagram approaches that of an infinite lattice.r min
continues to decrease with growing number of sites, an
well converged for a lattice of a few hundred oscillators.
shown in Fig. 4~b! the same trend is seen experimental

to
la-
he
FIG. 3. Bifurcation diagrams for~a! an iso-
lated map,~b! N516, ~c! N532, and ~d! N
510 000. The dashed line in all panels shows t
unstable orbitx* 5121/r .
5-3
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SIMDYANKIN, MOUSSEAU, AND HUNT PHYSICAL REVIEW E 66, 066205 ~2002!
although the inherent disorders help to decrease the fi
size effects.

Even though the bifurcation diagrams for an isolated m
and the infinite lattice appear similar, their respective orb
are qualitatively different for most values ofr. In particular,
most of the chaotic region of the latter shows a stretch
exponential trap-time distribution.

B. Dependence onr

Figure 3 also indicates the effect ofr on the dynamics of
a single site in a chain. The coupling stabilizes the orb
reducing significantly the size of the chaotic region. Its eff
is to shift the bifurcation diagram to the right, moving th
dynamics towards periodic orbits as is shown in Fig. 5~Fig.
5 will be discussed in more detail in Sec. IV C!.

The stretched-exponential behavior appears, for a la
enough lattice, aroundr 053.83. At this threshold value, th
stretching exponentb'0.33, obtained from fitting the long
time part of the trap distribution~Fig. 6!, according to Eq.
~1!. 0.33 is the lowest value ofb, we could observe for the
explored regions of the parameter space of the model. Be
this threshold, chaotic windows are interspersed with p
odic ones. Trajectories in these narrow windows tend to
erratically into neighboring periodic orbits, generatin

FIG. 4. ~a! Distribution of trap time forr 53.8888. N521
~squares: set of data points lying above the solid line! and N519
~open circles: the set of data points lying below the solid line!. The
solid line corresponds to the stretched-exponential fit Eq.~1! with
b50.5060.05 andt53.060.5. In the inset, we show the data fo
N517 ~dash-dotted line!, N521 ~dashed line!, and the fit~solid
line!. ~b! Distribution of trap time for the experimental setu
~squares,N521; dots,N520; open circles,N519). The stretched-
exponential fit is withb50.7560.05 andt55.060.5. Vertical
lines in both panels demarcate the interval, over which the fitt
procedure was performed.
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multiple-step trap distributions with no clear overall tim
behavior.

As seen in Fig. 6, the value ofb increases withr. For r
53.8888, the trap-time distribution is well fitted by
stretched exponential withb'0.5, while at r 54, the full
chaos limit for an isolated logistic map, a fit tor(t) gives
b50.7060.05 andt53.060.5.

Because of the short spatial correlation and the excel
quality of the simulation data, the exact value ofb is well
defined: increasing the lattice size from 64 to 1000 si
leaves the trap distribution essentially unchanged. Moreo
the same values ofb are obtained, within the error bars, b
changing the length of the interval, over which the fittin
procedure is performed.

These numbers are also in reasonable agreement with
perimental results, which showb varying from (0.10

g

FIG. 5. Larger dots: bifurcation diagram of the mapx(t11)
50.75f „x(t)…10.1625. Smaller dots: the same as in Fig. 3~b!. Al-
thoughr(a) @dashed-dotted line in Fig. 7~c!# corresponding to the
bifurcation diagram depicted by the smaller dots is not ad function,
it is narrow enough so that it creates a period-2 attractor in
coarse grained phase space of the couple map chain.

FIG. 6. Trap-time distributions fitted with stretched expone
tials. Dots correspond toN51000, r 53.83 and b50.33
60.05, t511.560.5. Open circles correspond toN564, r
53.8888, andb50.5060.05, t52.960.5. The solid lines show
the best fit to the stretched-exponential functionf(t).
5-4



CHARACTERIZATION OF THE STRETCHED- . . . PHYSICAL REVIEW E 66, 066205 ~2002!
FIG. 7. Densitiesr(a) and r(x) of a(t)5@ f „xn21(t)…1 f „xn11(t)…#/2 @panels~a!,~c!,~e!# and x(t) @panels~b!, ~d!, ~f!# from Eq. ~5!
normalized by the maximal value. Note that each row of panels corresponds to the same sets of parameters.
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60.05) –(0.9560.05). This wider range for the experime
is probably caused by the presence of site disorder.

This confirms that the best functional form for the sim
lation data is given by the Kohlrausch function.

C. Single-site dynamics

The iterative rule~2! can be viewed as an equation d
scribing the dynamics of a single element in the presenc
an external additive perturbationa(t):

x~ t11!5~12a! f „x~ t !…1aa~ t !, ~5!

where a(t)5@ f „xn21(t)…1 f „xn11(t)…#/2. For simplicity,
since all sites are statistically identical, we drop the subsc
n in Eq. ~5!.

This form allows us to concentrate on the impact, at
single-site level, of the rest of the network and to try
identify the essential elements for a stretched-exponen
dynamics. For this purpose, it is convenient to use the nat
invariant densityr(x) generated by typical orbits$x(t)%, t
51,2, . . . , of the map in Eq.~5!. The notion of the natura
invariant density is widely used in the studies of chaos@24#.
The functionr(x) is defined so that for any interval@x,x
1dx#P@0,1#, the fraction of the time, typical orbits spend
this interval isr(x)dx. In the same way, one can define t
densityr(a) for the perturbationa(t) in Eq. ~5!.

Figure 7 shows the behavior ofr(a) andr(x) for a few
sets of the parametersa, N, andr. In the case of an isolate
map (a50) and in the chaotic regime,a(t) is the sum of
two identically distributed independent random variables
r(a) is shown by the dash-dotted line in Fig. 7~b!. According
to the central limit theorem, if this sum contained much mo
than two terms,r(a) would very well agree with the norma
06620
of
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~Gaussian! distribution. However, even with only two terms
r(a) exhibits a maximum ata51/2 @the dash-dotted line in
Fig. 7~a!#.

The presence of one or few peaks inr(a) makes the
orbits $x(t)% intermittent for some values of the nonlineari
parameterr. This intermittency means that the~coarse-
grained! orbit $s(t)%, see Eq.~4!, stays periodic for some
time, becomes chaotic for a certain while, and goes perio
again. In order to demonstrate, how a periodic attractor
velops in a coupled system at a value ofr, for which the
isolated map produces a chaotic orbit, we can imagin
density r(a)5d(a2a0), whered(a) is the delta function
and a0P@0,1# is a constant. In this case, Eq.~5! becomes
x(t11)5(12a) f „x(t)…1aa05c1f „x(t)…1c2, which is
the iterative equation for the isolated map scaled by a c
stantc1 and shifted by another constantc2. This manipula-
tion with the isolated map results in a bifurcation diagra
translated with respect to the original one@Fig. 3~a!#, while
preserving all its qualitative features, see Fig. 5. In particu
the period-2 attractors of the modified map overlap with c
otic orbits of the original map.

As discussed above, in the interval 0.1,a,0.19, the lat-
tice falls into period-2 spatial and temporal patterns, i
each of the two neighboring sites oscillate out of phase
each site alternates between two valuesx(1),x(2), as indi-
cated in Figs. 7~a! and 7~b!.

For larger values ofa, the natural invariant density be
comes more complex. When the lattice size is a small e
number, the spatial pattern is periodic with the period, wh
is equal to four ~two sites ‘‘up’’ followed by two sites
‘‘down’’ ! and each site again undergoes a period-2 dynam
@Figs. 7~c! and 7~d!#, which is manifested by the peaks i
r(x). For N516, there are narrow peaks inr(a) andr(x).
5-5
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SIMDYANKIN, MOUSSEAU, AND HUNT PHYSICAL REVIEW E 66, 066205 ~2002!
These peaks broaden and merge rapidly, however, for l
N, and the system displays strong sign of chaoticity.

This chaoticity can be controlled byr, and we see that the
orbits spend more and more time in the period-2 attrac
relative to the chaotic ones as the nonlinearity paramete
decreased, relating directly to a change in the value of
stretching exponentb @Figs. 7~e! and 7~f!#.

Although providing a clearer picture of the dynamic
knowledge of the invariant density is not sufficient to rep
duce the stretched-exponential dynamics. For exam
choosing randomly the values ofa(t) in Eq. ~5! according to
a prescribedr(a) generates only an exponential trap-tim
distribution. Variations on this theme, including the introdu
tion of a two-step distribution, which favors staying in th
period-2 phase once in it, also fail to give a stretche
exponential distribution of trap times. Spatial correlatio
even though short range, are essential to induce a stable
self-organized stretched-exponential distribution.

D. Stability of the spatial period-4 structure

Figure 1 plots the time sequence forsn(t) on a small
region of a 1000-site chain forr 53.83 (b'0.33) andr
53.8888 (b'0.5). These show a remarkable range in
trap size: the larger traps of the first one can be up to
times longer than those atr 53.8888, and corresponding to
time scale 30 000 times larger than the basic time step. T
time scale is similar to that observed experimentally@7#. In
spite of these very stable traps, for long enough time, all s
display an identical dynamics and no region of the latt
remains frozen.

Looking at the same figure, we also see that,for a given r,
the trap width appears to be uncorrelated with its leng
long traps remain narrow and are composed of ordered
mains with several occurrences of period 4, 5, or 6. Wh
the period-4 domains can remain totally stable for a lo
time, the middle site of the three-up or three-down segm
in period-5 and period-6 domains show some instabil
They must, therefore, be considered more as defects in
stable phase than as additional spatial structures. Even
these larger basic domains, that occur mostly for the lo
values ofr, are responsible for the apparent spatial period
ity of 5 in the spatial correlation function atr 53.83 ~see
Fig. 2!.

In view of this discussion, the space-time diagram can
separated in two distinct phases: the ordered spatial peri
and the chaotic phase. The former can only be destroye
the boundary or by spatial defects~domains of period 5 or 6!.

We verify this observation by two simulations. First, th
entire chain is initially set into period-4 state, with the peri
formed by two neighboring sites withxn(0)5x(1), n51,2
and the next two sites withxn(0)5x(2), n53,4. The values
x(1) andx(2) are taken to be equal to those corresponding
the two peaks inr(x) in Fig. 7~f! for r 53.83 and N
51000. Simulations starting from these initial conditions
main frozen in these spatial period-4 and temporal perio
states indefinitely. Although metastable, these states req
the presence of defects to be destroyed.
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This can be checked in a second test. We first iterat
1000-site lattice atr 53.83, for 106 time steps, in order to
eliminate any transient effects. At that point, at once, half
the chain sites are set into the same spatial period-4 sta
above. As shown in Fig. 8, this phase then disappears gr
ally, over about 30 000 time steps, invaded from the edges
the chaotic phase.

V. DISCUSSION

The previous sections have shown that the dynamics
the network can be understood in terms of a competit
between two dynamical regimes: a stable period-2 orbit
a fully chaotic state. This can be deduced from Figs. 5 an
when the neighboring sites are in opposite bands, their c
tribution shifts the bifurcation diagram into a period-2 r
gime. A spatial period 4 is therefore, the basic stable m
with this set of parameters.

As mentioned above, we cannot reconstruct a stretch
exponential dynamics by simply using the natural invaria
density inserted into Eq.~5!. We have found that the only
way to obtain a stretched-exponential trap-time distribut
in this situation is to impose a stretched-exponential tr
time distribution ona(t) for the values ofa within the peak
region inr(a) ~see Fig. 7!. More interestingly, connecting a
single site, with a unidirectional coupling, to two sites s
lected at random on a lattice, is sufficient to induce
stretched-exponential trap distribution on this single site,
beit with a largerb than that for the elements that belong
the lattice.

Thus, once an external perturbation, following
stretched-exponential dynamics, is imposed on a chaotic
ement, the latter will immediately adopt a similar dynamic
However, stretched-exponential distributions cannot be
served in a self-organized process without spatial organ

FIG. 8. Space-time diagram forN51000 andr 53.83. Dots
correspond to trap boundaries—points in time when a site interr
its temporal period-2 dynamics. Every fifth site and every 40
iteration are shown. The heavy horizontal line shows the reg
which was set into the spatial period-4 state at a certain momen
time. Note that the thus induced spatial period-4 domain does
have any bursts in the interior, and is affected by the chaotic ph
only at the boundaries.
5-6
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CHARACTERIZATION OF THE STRETCHED- . . . PHYSICAL REVIEW E 66, 066205 ~2002!
tion. For example, connecting the nodes of a balanced bin
tree unidirectionally towards its root results in the densit
r(x) and r(a), similar to those depicted in Figs. 7~e! and
7~f!, already for two levels in the tree. Nevertheless, the tr
time distribution measured at the root node is a pure ex
nential. This suggests that the stretched-exponential distr
tions require some spatial organization allowing tim
limited, spatial period-4 structures to occur and to
stabilized.

The nature of this spatial organization is somewhat pa
doxical. Correlations are very short range and the width
these domains are only weakly varying with the stretch
parameter. While traps atr 53.83 are up to 250 times longe
than those atr 53.8888, their width is only four to five time
larger, as displayed in Fig. 1. This decoupling between s
tial and temporal correlation is reminiscent of dynamical h
erogeneities observed in glass-forming systems@17,28,29#.
Associating a ‘‘temperature’’ with the control parameterr,
we see that the spatial size of the traps increases with
creasingr without diverging. In the same way, the size
dynamical heterogeneities increases and the stretching e
nentb decreases under cooling in glass-forming systems

As we also showed that once in a perfect spatial perio
regime, the system will never become chaotic. The fin
lifetime arises from defects in the period-4 phase or from
chaotic boundaries. This behavior is similar to what is se
in the spin-system models with effective constraints on
dynamics@17# and the state-space partition model@30#. In-
terestingly, both models show a stretched-exponential de
of certain statistical quantities. The distinctive feature of
present model, Sec. II is that the effective dynamical c
straints arise in the course of the evolution described
the dynamical equation~2!, unlike the above cited
models, where the fixed constrains are imposed on
neighboring sites and the dynamics is due to a Monte C
procedure.
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VI. CONCLUSION

The coupled array of chaotic oscillators presented h
has a number of properties that make it an important mo
As was shown above and in Ref.@7#, it is a faithful repre-
sentation of the dynamics of an experimental setup
coupled diode resonators in a chaotic regime character
by a stretched-exponential distribution of trap time. Mor
over, the low cost associated with numerically solving t
model of Eq.~2! allows us to study the system on time sca
unreachable with atomic models; it takes less than a day
a fast processor, to iterate a lattice of 1000 sites over9

steps. With traps extending to more than 30 000 times
basic time step, long simulations are absolutely necessa
establish the nature of the dynamics in these systems.

Results of these simulations demonstrate that
stretched-exponential distributions arise from the comp
tion between a chaotic and a period-2 regimes. The stretc
exponential requires some spatial organization to appear
does not imply a diverging length scale as the traps beco
longer and longer: the period-4 structure is sufficient to s
bilize a site onto a periodic orbit and the space of the spa
correlation is only weakly related to the length of the tra
appearing in these systems.

There are strong similarities between this system and
configurational glasses, and we suggest that the underst
ing gained here could be extended directly to these impor
materials. We are currently pursuing this avenue of resea
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